Spatial variability in levels of benzene, formaldehyde, and total benzene, toluene, ethylbenzene and xylenes in New York City: a land-use regression study
نویسندگان
چکیده
BACKGROUND Hazardous air pollutant exposures are common in urban areas contributing to increased risk of cancer and other adverse health outcomes. While recent analyses indicate that New York City residents experience significantly higher cancer risks attributable to hazardous air pollutant exposures than the United States as a whole, limited data exist to assess intra-urban variability in air toxics exposures. METHODS To assess intra-urban spatial variability in exposures to common hazardous air pollutants, street-level air sampling for volatile organic compounds and aldehydes was conducted at 70 sites throughout New York City during the spring of 2011. Land-use regression models were developed using a subset of 59 sites and validated against the remaining 11 sites to describe the relationship between concentrations of benzene, total BTEX (benzene, toluene, ethylbenzene, xylenes) and formaldehyde to indicators of local sources, adjusting for temporal variation. RESULTS Total BTEX levels exhibited the most spatial variability, followed by benzene and formaldehyde (coefficient of variation of temporally adjusted measurements of 0.57, 0.35, 0.22, respectively). Total roadway length within 100 m, traffic signal density within 400 m of monitoring sites, and an indicator of temporal variation explained 65% of the total variability in benzene while 70% of the total variability in BTEX was accounted for by traffic signal density within 450 m, density of permitted solvent-use industries within 500 m, and an indicator of temporal variation. Measures of temporal variation, traffic signal density within 400 m, road length within 100 m, and interior building area within 100 m (indicator of heating fuel combustion) predicted 83% of the total variability of formaldehyde. The models built with the modeling subset were found to predict concentrations well, predicting 62% to 68% of monitored values at validation sites. CONCLUSIONS Traffic and point source emissions cause substantial variation in street-level exposures to common toxic volatile organic compounds in New York City. Land-use regression models were successfully developed for benzene, formaldehyde, and total BTEX using spatial indicators of on-road vehicle emissions and emissions from stationary sources. These estimates will improve the understanding of health effects of individual pollutants in complex urban pollutant mixtures and inform local air quality improvement efforts that reduce disparities in exposure.
منابع مشابه
Author's response to reviews Title: Spatial variability in levels of benzene, formaldehyde, and total BTEX in New York City: a land-use regression study Authors:
متن کامل
Study of seasonal and spatial variability among Benzene, Toluene, and p-Xylene (BTp-X) in ambient air of Delhi, India
This study was carried out to analyze the variations of Benzene, Toluene, and para- Xylene (BTp-X) present in the urban air of Delhi. These pollutants can enter into the human body through various pathways like inhalation, oral and dermal exposure posing adverse effects on human health. Keeping in view of the above facts, six different locations of Delhi were selected for the study during summe...
متن کاملStudy of seasonal and spatial variability among Benzene, Toluene, and p-Xylene (BTp-X) in ambient air of Delhi, India
This study was carried out to analyze the variations of Benzene, Toluene, and para- Xylene (BTp-X) present in the urban air of Delhi. These pollutants can enter into the human body through various pathways like inhalation, oral and dermal exposure posing adverse effects on human health. Keeping in view of the above facts, six different locations of Delhi were selected for the study during summe...
متن کاملBTEX pollution caused by motorcycles in the megacity of HoChiMinh.
Monitoring of benzene, toluene and xylenes (BTEX) was conducted along with traffic counts at 17 roadside sites in urban areas of HoChiMinh. Toluene was the most abundant substance, followed by p,m-xylenes, benzene, o-xylene and ethylbenzene. The maximum observed hour-average benzene concentration was 254 microg/m3. Motorcycles contributed to 91% of the traffic fleet. High correlations among BTE...
متن کاملTemperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous.
A microbial consortium derived from a gasoline-contaminated aquifer was enriched on toluene (T) in a chemostat at 20 degrees C and was found to degrade benzene (B), ethylbenzene (E), and xylenes (X). Studies conducted to determine the optimal temperature for microbial activity revealed that cell growth and toluene degradation were maximized at 35 degrees C. A consortium enriched at 35 degrees C...
متن کامل